Amazon cover image
Image from Amazon.com
Image from Google Jackets

Scattering amplitudes in gauge theory and gravity / Henriette Elvang, University of Michigan, Ann Arbor, Yu-tin Huang, National Taiwan University.

By: Material type: TextTextPublication details: Cambridge: Cambridge University Press 2015Description: xii, 323 pages : illustrations ; 26 cmISBN:
  • 9781107069251 (hardback)
Subject(s): DDC classification:
  • 539.7 ELV 23
LOC classification:
  • QC20.7.S3 E48 2015
Other classification:
  • SCI040000
Online resources:
Contents:
Machine generated contents note: Preface; 1. Introduction; Part I. Trees: 2. Spinor helicity formalism; 3. On-shell recursion relations at tree-level; 4. Supersymmetry; 5. Symmetries of N = 4 SYM; Part II. Loops: 6. Loop amplitudes and generalized unitarity; 7. BCFW recursion for loops; 8. Leading singularities and on-shell diagrams; Part III. Topics: 9. Grassmannia; 10. Polytopes; 11. Amplitudes beyond four dimensions; 12. Supergravity amplitudes; 13. A colorful duality; 14. Further reading; Appendix; References; Index.
Summary: "Providing a comprehensive, pedagogical introduction to scattering amplitudes in gauge theory and gravity, this book is ideal for graduate students and researchers. It offers a smooth transition from basic knowledge of quantum field theory to the frontier of modern research. Building on basic quantum field theory, the book starts with an introduction to the spinor helicity formalism in the context of Feynman rules for tree-level amplitudes. The material covered includes on-shell recursion relations, superamplitudes, symmetries of N=4 super Yang-Mills theory, twistors and momentum twistors, Grassmannians, and polytopes. The presentation also covers amplitudes in perturbative supergravity, 3D Chern-Simons matter theories, and color-kinematics duality and its connection to 'gravity=(gauge theory)2'. Basic knowledge of Feynman rules in scalar field theory and quantum electrodynamics is assumed, but all other tools are introduced as needed. Worked examples demonstrate the techniques discussed, and over 150 exercises help readers absorb and master the material"--Summary: "This book grew out of a need to have a set of easily accessible notes that introduced the basic techniques used in modern research on scattering amplitudes. In addition to the key tools, such a review should collect some of the small results and intuitions the authors had acquired from their work in the eld and which had not reviously been exposed in the literature. As the authors quickly realized, such an introduction would bring the reader only part of the way towards some of the most exciting topics in the eld, so they decided to add a little extra" material. While doing so and this took quite a while the authors remained in full and complete denial about writing a book. It was only at the end of process that they faced their worst fears: the review was becoming a book. You now hold the result in your hands. Because the authors were not writing a book, they actually thoroughly enjoyed the work. Their hope is that you will enjoy it too and that you will nd it useful"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books School of Theoretical Physics Library Books 539.7 ELV (Browse shelf(Opens below)) Available 11735

Includes bibliographical references (pages 294-318) and index.

Machine generated contents note: Preface; 1. Introduction; Part I. Trees: 2. Spinor helicity formalism; 3. On-shell recursion relations at tree-level; 4. Supersymmetry; 5. Symmetries of N = 4 SYM; Part II. Loops: 6. Loop amplitudes and generalized unitarity; 7. BCFW recursion for loops; 8. Leading singularities and on-shell diagrams; Part III. Topics: 9. Grassmannia; 10. Polytopes; 11. Amplitudes beyond four dimensions; 12. Supergravity amplitudes; 13. A colorful duality; 14. Further reading; Appendix; References; Index.

"Providing a comprehensive, pedagogical introduction to scattering amplitudes in gauge theory and gravity, this book is ideal for graduate students and researchers. It offers a smooth transition from basic knowledge of quantum field theory to the frontier of modern research. Building on basic quantum field theory, the book starts with an introduction to the spinor helicity formalism in the context of Feynman rules for tree-level amplitudes. The material covered includes on-shell recursion relations, superamplitudes, symmetries of N=4 super Yang-Mills theory, twistors and momentum twistors, Grassmannians, and polytopes. The presentation also covers amplitudes in perturbative supergravity, 3D Chern-Simons matter theories, and color-kinematics duality and its connection to 'gravity=(gauge theory)2'. Basic knowledge of Feynman rules in scalar field theory and quantum electrodynamics is assumed, but all other tools are introduced as needed. Worked examples demonstrate the techniques discussed, and over 150 exercises help readers absorb and master the material"--

"This book grew out of a need to have a set of easily accessible notes that introduced the basic techniques used in modern research on scattering amplitudes. In addition to the key tools, such a review should collect some of the small results and intuitions the authors had acquired from their work in the eld and which had not reviously been exposed in the literature. As the authors quickly realized, such an introduction would bring the reader only part of the way towards some of the most exciting topics in the eld, so they decided to add a little extra" material. While doing so and this took quite a while the authors remained in full and complete denial about writing a book. It was only at the end of process that they faced their worst fears: the review was becoming a book. You now hold the result in your hands. Because the authors were not writing a book, they actually thoroughly enjoyed the work. Their hope is that you will enjoy it too and that you will nd it useful"--

There are no comments on this title.

to post a comment.